

Second chance: Upgrading devices from Android 9 to Android 14

A real case of using open-source software to save thousands of old devices from being disposed and replaced

Igor Kalkov-Streitz FOSDEM'25 / Brussels

Igor Kalkov-Streitz

AOSP developer, PhD in embedded and real-time systems, co-maintainer of Android for RPi, CEO at emteria.

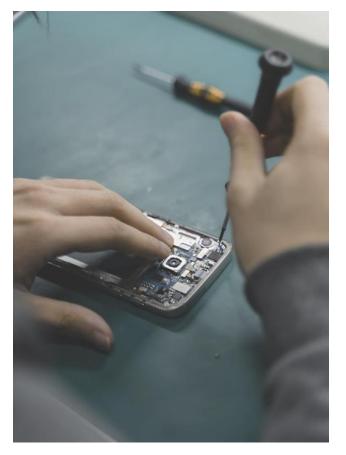
igor.kalkov@emteria.com linkedin.com/in/kalkov

Public AOSP repositories for Raspberry Pi https://github.com/RTAndroid https://github.com/android-rpi https://github.com/emteria

emteria GmbH

- Providing Android support for SBCs and custom devices
 - Validating and performing security audits for Android OS
 - Offering over-the-air updates & device management services

Android for RPi


EMTERIA

Software Obsolescence is a Problem

Why upgrading sofware on existing devices is important

- Hardware manufacturers make money by selling (new) devices
- Rapid Android release cycles \rightarrow shorter device support lifespans
- Security vulnerabilities in unmaintained Android releases
- EU regulations & compliance for device longevity
- Economic & environmental benefits of upgrading instead of replacing
- Main project goals:
 - Upgrade an existing device from Android 9 to something newer
 - Reduce dependencies from the original device manufacturer
 - Use open-source components where possible

Hardware Specs

Specs of the device and usable interfaces

- Test device available for our experiments
 - No schematics, no JTAG, but UART is available
 - Unlockable bootloader, working fastboot
- Popular Qualcomm Snapdragon SoC from 2018
- Lots of peripherals
 - Media: multiple cameras, audio
 - Wireless: WIFI, BT, NFC, radio
 - Extras: fingerprint reader, sensors

Software Specs

Contents of the original Board Support Package

- Original Android version: 9 ullet
- Original Kernel version: 4.9 ullet
- Proprietary BSP in a single ZIP file •
 - Repo manifest with all projects: no
 - Git history for old changes: no ٠
 - Technical support from ODM: no •
 - Support from client's in-house expert: yes

Research of Open-Source BSPs

Gathering information about similar devices and BSPs

- Search for compatible devices and BSPs online
 - Same or pin-compatible SoC
 - Similar kernel version
- Popular open-source Android distros (in alphabetical order):
 - AOSPA: <u>https://github.com/AOSPA</u>
 - CalyxOS: <u>https://gitlab.com/CalyxOS</u>
 - /e/OS: <u>https://gitlab.e.foundation/e</u>
 - GrapheneOS: <u>https://github.com/GrapheneOS</u>
 - LineageOS: <u>https://github.com/LineageOS</u>
 - XDA Forums: <u>https://xdaforums.com</u>

Result Evaluation

Deciding which BSP is the best match

- Create a list of maybe-compatible open-source BSPs
 - Device name and SOC information
 - Kernel and Android version(s)
 - Development status
- Pick the most promising one
 - Closest match for the Linux kernel: same version!
 - Newest Android version: 14!
 - Similar peripherals: more or less
 - Officially supported by LineageOS: yes
 - Actively maintained: yes

Οσνίεφ	300	Aisensie	Nonipt	200
		Android (9- Android (0- Android (9- Android (91 Android (91 Android (91	1947 1	ndnún ved
	Balantin Hanna (1977) Manual Angel	Android 7 1 Android 8 1 Android 9 Android 10 Android 11	3.18	disocintin user
Cheranne ^{-S}		Androx () Androx () Androx () Androx () Androx ()	A; 9	osintin uqd
Ukuntschilligu ^s		Androis 9 Androis 9 Androis 10 Androis 12 Androis 13 Androis 14	gia.	ಸಾಗರ್ಭರ್
	Barran Brand	Android 10 Android 11 Android 13 Android 13 Android 13		
	International Contents	Andreid 71 Andreid 11	3.18	
		Anaron 2.1 Anaron 0. Anaron 0. Anaron 12 Anaron 12 Anaron 12 Anaron 13	4764	continued'
denteration and di	CHEMILIUS ALICON P	Android 7-1 Android 8-1 Android 9-1	4,9	discontinued

Step #1: Linux Kernel

Preparing the device tree and the defconfig

Android Applications Libraries Drivers
(Framework) (HALs)
Linux Kernel
Bootloader / FW
Hardware

- Goal: Make the original kernel compile with the new BSP
 - Possibility 1: fully replace LOS's kernel with original kernel
 - Possibility 2: migrate original DT & drivers into the LOS kernel

 \sim This was easier in our case.

- Difficulties compiling the original kernel
 - Dependencies on LOS' makefiles and defines
 - Different toolchains in original BSP and in new BSP
- Keep the device tree small

Mainly early partition mounts.

- Add Android-specific DT definitions
- Disable all non-critical drivers in the defconfig

Like audio, touch, radio, networking.

Step #2: Android Boot

Let the device boot for the first time

Android
Applications Libraries Drivers
Framework HALs
Linux Kernel
Poetlander / [\//
Bootloader / FW
Hardware

- Goal: Get Android to boot to the main UI
 - 1. Make device config similar to the original one

 \succ Example: make the partition layout compatible.

2. Make device config as small as possible

Example: disable all non-critical features and HALs.

3. Make device config as permissive as possible

Example: disable security (AVB, SELinux, etc.)

- Repeat the cycle:
 - Compile, flash, boot, record logs
 - Fix the most critical issue which causes freezes or boot loops

Step #3: Userspace

Debugging remaining features step by step

Android
ApplicationsLibrariesDriversFrameworkHALs
Linux Kernel
Bootloader / FW
Hardware

- Goal: Bring back features and peripherals
 - Start with Touch, USB, ADB, WIFI, ...
- Continue debugging and fixing step by step
 - Record an error trace for a specific component
 - Figure out how it is configured in LOS
 - Figure out how it was configured in the original BSP
 - Re-enable kernel driver config and DT entries
 - Make corresponding adjustments or replace HALs/blobs
- Cleanup and finalize
 - Enable SELinux and extend product-specific policies
 - Replace signing certificates

Conclusion and Future Work

Key takeaways and next steps

- This project was successful, but it is not yet complete
- We will continue working with Lineage repos and contribute where possible
- Huge dependency on availability of code and knowledge
 - Would not be possible without open-source software \rightarrow plays huge role for device longevity
 - Difficult without ODM support \rightarrow we had help from an expert familiar with this kernel
- Call to action for everyone
 - Contribute to open-source projects
 - Upgrade existing devices

EMTERI

android

Dr. Igor Kalkov-Streitz

Managing Director

igor.kalkov@emteria.com

linkedin.com/in/kalkov

